Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 43(2): 732-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25572316

RESUMO

The possibility that alterations in DNA methylation are mechanistic drivers of development, aging and susceptibility to disease is widely acknowledged, but evidence remains patchy or inconclusive. Of particular interest in this regard is the brain, where it has been reported that DNA methylation impacts on neuronal activity, learning and memory, drug addiction and neurodegeneration. Until recently, however, little was known about the 'landscape' of the human brain methylome. Here we assay 1.9 million CpGs in each of 43 brain samples representing different individuals and brain regions. The cerebellum was a consistent outlier compared to all other regions, and showed over 16 000 differentially methylated regions (DMRs). Unexpectedly, the sequence characteristics of hypo- and hypermethylated domains in cerebellum were distinct. In contrast, very few DMRs distinguished regions of the cortex, limbic system and brain stem. Inter-individual DMRs were readily detectable in these regions. These results lead to the surprising conclusion that, with the exception of cerebellum, DNA methylation patterns are more homogeneous between different brain regions from the same individual, than they are for a single brain region between different individuals. This finding suggests that DNA sequence composition, not developmental status, is the principal determinant of the human brain DNA methylome.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Sequência de Bases , Cerebelo/metabolismo , Ilhas de CpG , DNA/química , Humanos
2.
PLoS Genet ; 6(9): e1001134, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20885785

RESUMO

CpG islands (CGIs) are vertebrate genomic landmarks that encompass the promoters of most genes and often lack DNA methylation. Querying their apparent importance, the number of CGIs is reported to vary widely in different species and many do not co-localise with annotated promoters. We set out to quantify the number of CGIs in mouse and human genomes using CXXC Affinity Purification plus deep sequencing (CAP-seq). We also asked whether CGIs not associated with annotated transcripts share properties with those at known promoters. We found that, contrary to previous estimates, CGI abundance in humans and mice is very similar and many are at conserved locations relative to genes. In each species CpG density correlates positively with the degree of H3K4 trimethylation, supporting the hypothesis that these two properties are mechanistically interdependent. Approximately half of mammalian CGIs (>10,000) are "orphans" that are not associated with annotated promoters. Many orphan CGIs show evidence of transcriptional initiation and dynamic expression during development. Unlike CGIs at known promoters, orphan CGIs are frequently subject to DNA methylation during development, and this is accompanied by loss of their active promoter features. In colorectal tumors, however, orphan CGIs are not preferentially methylated, suggesting that cancer does not recapitulate a developmental program. Human and mouse genomes have similar numbers of CGIs, over half of which are remote from known promoters. Orphan CGIs nevertheless have the characteristics of functional promoters, though they are much more likely than promoter CGIs to become methylated during development and hence lose these properties. The data indicate that orphan CGIs correspond to previously undetected promoters whose transcriptional activity may play a functional role during development.


Assuntos
Sequência Conservada/genética , Ilhas de CpG/genética , Genoma/genética , Mamíferos/genética , Regiões Promotoras Genéticas , Adulto , Animais , Sequência de Bases , Cromatografia de Afinidade , Neoplasias Colorretais/genética , Metilação de DNA/genética , Feminino , Histonas/metabolismo , Humanos , Lisina/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Análise de Sequência de DNA , Transcrição Gênica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...